Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
Sci Rep ; 14(1): 6000, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472367

RESUMO

Oriental poppy (Papaver orientale L.) belonging to the Papaveraceae family, has the capacity to synthesize a wide range of benzylisoquinoline alkaloids (BIAs). This experiment was conducted to investigate the effects of green and chemical copper oxide nanoparticles (CuO NPs) elicitors on oxidative stress and the BIAs biosynthesis pathway in the cell suspension culture of P. orientale. This research shows that both green and chemical CuO NPs at concentrations of 20 mg/L and 40 mg/L, induce oxidative stress in the cell suspension of P. orientale by increasing the production of H2O2 and the activity of antioxidant enzymes. The comparison of treatments revealed that utilizing a lower concentration of CuO NPs (20 mg/L) and extending the duration of cell suspension incubation (up to 48 h) play a more influential role in inducing the expression of the BIAs biosynthesis pathway genes (PsWRKY, TYDC, SalSyn, SalR, SalAT, T6ODM, COR and CODM) and increasing the production of morphinan alkaloids (thebaine, codeine, and morphine). The overarching results indicate that the concentration of CuO NPs and the duration of cell treatment have a more significant impact than the nature of CuO NPs in inducing oxidative stress and stimulating the expression of the BIAs pathway genes.


Assuntos
Alcaloides , Benzilisoquinolinas , Nanopartículas Metálicas , Nanopartículas , Papaver , Papaver/genética , Cobre/metabolismo , Peróxido de Hidrogênio/metabolismo , Morfina/metabolismo , Alcaloides/metabolismo , Benzilisoquinolinas/metabolismo , Expressão Gênica
2.
Pest Manag Sci ; 80(2): 637-647, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37752099

RESUMO

BACKGROUND: Corn poppy (Papaver rhoeas) is the most damaging broadleaf weed in France. Massively parallel amplicon sequencing was used to investigate the prevalence, mode of evolution and spread of resistance-endowing ALS alleles in 422 populations randomly sampled throughout poppy's range in France. Bioassays were used to detect resistance to the synthetic auxin 2,4-D in 43 of these populations. RESULTS: A total of 21 100 plants were analysed and 24 mutant ALS alleles carrying an amino-acid substitution involved or potentially involved in resistance were identified. The vast majority (97.6%) of the substitutions occurred at codon Pro197, where all six possible single-nucleotide non-synonymous substitutions plus four double-nucleotide substitutions were identified. Changes observed in the enzymatic properties of the mutant ALS isoforms could not explain the differences in prevalence among the corresponding alleles. Sequence read analysis showed that mutant ALS alleles had multiple, independent evolutionary origins, and could have evolved several times independently within an area of a few kilometres. Finally, 2,4-D resistance was associated with mutant ALS alleles in individual plants in one third of the populations assayed. CONCLUSION: The intricate geographical mosaic of mutant ALS alleles observed is the likely result of the combination of huge population sizes, multiple independent mutation events and human-mediated spread of resistance. Our work highlights the ability of poppy populations and individual plants to accumulate different ALS alleles and as yet unknown mechanisms conferring resistance to synthetic auxins. This does not bode well for the continued use of chemical herbicides to control poppy. © 2023 Society of Chemical Industry.


Assuntos
Acetolactato Sintase , Esclerose Amiotrófica Lateral , Herbicidas , Lactatos , Papaver , Humanos , Papaver/genética , Acetolactato Sintase/genética , Prevalência , Herbicidas/farmacologia , Ácido 2,4-Diclorofenoxiacético , Nucleotídeos , Resistência a Herbicidas/genética , Mutação
3.
Biochem J ; 480(23): 2009-2022, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38063234

RESUMO

Protein engineering provides a powerful base for the circumvention of challenges tied with characteristics accountable for enzyme functions. CYP82Y1 introduces a hydroxyl group (-OH) into C1 of N-methylcanadine as the substrate to yield 1-hydroxy-N-methylcanadine. This chemical process has been found to be the gateway to noscapine biosynthesis. Owning to the importance of CYP82Y1 in this biosynthetic pathway, it has been selected as a target for enzyme engineering. The insertion of tags to the N- and C-terminal of CYP82Y1 was assessed for their efficiencies for improvement of the physiological performances of CYP82Y1. Although these attempts achieved some positive results, further strategies are required to dramatically enhance the CYP82Y1 activity. Here methods that have been adopted to achieve a functionally improved CYP82Y1 will be reviewed. In addition, the possibility of recruitment of other techniques having not yet been implemented in CYP82Y1 engineering, including the substitution of the residues located in the substrate recognition site, formation of the synthetic fusion proteins, and construction of the artificial lipid-based scaffold will be discussed. Given the fact that the pace of noscapine synthesis is constrained by the CYP82Y1-catalyzing step, the methods proposed here are capable of accelerating the rate of reaction performed by CYP82Y1 through improving its properties, resulting in the enhancement of noscapine accumulation.


Assuntos
Noscapina , Papaver , Noscapina/química , Noscapina/metabolismo , Papaver/genética , Papaver/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Metiltransferases/metabolismo , Vias Biossintéticas
4.
Plant J ; 116(6): 1804-1824, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37706612

RESUMO

Whole-genome duplication (WGD) leads to the duplication of both coding and non-coding sequences within an organism's genome, providing an abundant supply of genetic material that can drive evolution, ultimately contributing to plant adaptation and speciation. Although non-coding sequences contain numerous regulatory elements, they have been understudied compared to coding sequences. In order to address this gap, we explored the evolutionary patterns of regulatory sequences, coding sequences and transcriptomes using conserved non-coding elements (CNEs) as regulatory element proxies following the recent WGD event in opium poppy (Papaver somniferum). Our results showed similar evolutionary patterns in subgenomes of regulatory and coding sequences. Specifically, the biased or unbiased retention of coding sequences reflected the same pattern as retention levels in regulatory sequences. Further, the divergence of gene expression patterns mediated by regulatory element variations occurred at a more rapid pace than that of gene coding sequences. However, gene losses were purportedly dependent on relaxed selection pressure in coding sequences. Specifically, the rapid evolution of tissue-specific benzylisoquinoline alkaloid production in P. somniferum was associated with regulatory element changes. The origin of a novel stem-specific ACR, which utilized ancestral cis-elements as templates, is likely to be linked to the evolutionary trajectory behind the transition of the PSMT1-CYP719A21 cluster from high levels of expression solely in P. rhoeas root tissue to its elevated expression in P. somniferum stem tissue. Our findings demonstrate that rapid regulatory element evolution can contribute to the emergence of new phenotypes and provide valuable insights into the high evolvability of regulatory elements.


Assuntos
Papaver , Papaver/genética , Papaver/metabolismo , Duplicação Gênica , Genoma , Evolução Molecular
5.
Curr Biol ; 33(11): R530-R542, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37279687

RESUMO

Self-incompatibility (SI) plays a pivotal role in whether self-pollen is accepted or rejected. Most SI systems employ two tightly linked loci encoding highly polymorphic pollen (male) and pistil (female) S-determinants that control whether self-pollination is successful or not. In recent years our knowledge of the signalling networks and cellular mechanisms involved has improved considerably, providing an important contribution to our understanding of the diverse mechanisms used by plant cells to recognise each other and elicit responses. Here, we compare and contrast two important SI systems employed in the Brassicaceae and Papaveraceae. Both use 'self-recognition' systems, but their genetic control and S-determinants are quite different. We describe the current knowledge about the receptors and ligands, and the downstream signals and responses utilized to prevent self-seed set. What emerges is a common theme involving the initiation of destructive pathways that block the key processes that are required for compatible pollen-pistil interactions.


Assuntos
Brassica , Papaver , Brassica/genética , Papaver/genética , Papaver/metabolismo , Pólen/metabolismo , Polinização/fisiologia , Transdução de Sinais/fisiologia , Proteínas de Plantas/metabolismo
6.
Molecules ; 28(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298742

RESUMO

(S)-Norcoclaurine is synthesized in vivo through a metabolic pathway that ends with (S)-norcoclaurine synthase (NCS). The former constitutes the scaffold for the biosynthesis of all benzylisoquinoline alkaloids (BIAs), including many drugs such as the opiates morphine and codeine and the semi-synthetic opioids oxycodone, hydrocodone, and hydromorphone. Unfortunately, the only source of complex BIAs is the opium poppy, leaving the drug supply dependent on poppy crops. Therefore, the bioproduction of (S)-norcoclaurine in heterologous hosts, such as bacteria or yeast, is an intense area of research nowadays. The efficiency of (S)-norcoclaurine biosynthesis is strongly dependent on the catalytic efficiency of NCS. Therefore, we identified vital NCS rate-enhancing mutations through the rational transition-state macrodipole stabilization method at the Quantum Mechanics/Molecular Mechanics (QM/MM) level. The results are a step forward for obtaining NCS variants able to biosynthesize (S)-norcoclaurine on a large scale.


Assuntos
Alcaloides , Benzilisoquinolinas , Carbono-Nitrogênio Ligases , Papaver , Alcaloides/metabolismo , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/metabolismo , Codeína , Papaver/genética , Papaver/metabolismo
7.
Biomolecules ; 14(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275743

RESUMO

REPI is a pivotal point enzyme in plant benzylisoquinoline alkaloid metabolism as it promotes the evolution of the biosynthetic branch of morphinan alkaloids. Experimental studies of its activity led to the identification of two modules (DRS and DRR) that catalyze two sequential steps of the epimerization of (S)- to (R)-reticuline. Recently, special attention has been paid to its genetic characterization and evolutionary history, but no structural analyses of the REPI protein have been conducted to date. We present here a computational structural characterization of REPI with heme and NADP cofactors in the apo state and in three complexes with substrate (S)-reticuline in DRS and intermediate 1,2-dehydroreticuline in DRS and in DRR. Since no experimental structure exists for REPI, we used its AlphaFold model as a scaffold to build up these four systems, which were submitted to all-atom molecular dynamics (MD) simulations. A comparison of MD results for the four systems revealed key dynamic changes associated with cofactor and ligand binding and provided a dynamic picture of the evolution of their structures and interactions. We also explored the possible dynamic occurrence of tunnels and electrostatic highways potentially involved in alternative mechanisms for channeling the intermediate from DRS to DRR.


Assuntos
Alcaloides , Papaver , Papaver/genética , Papaver/química , Papaver/metabolismo , Simulação de Dinâmica Molecular , Alcaloides/química
8.
Nat Commun ; 13(1): 6768, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36351903

RESUMO

Opium poppy accumulates copious amounts of several benzylisoquinoline alkaloids including morphine, noscapine, and papaverine, in the specialized cytoplasm of laticifers, which compose an internal secretory system associated with phloem throughout the plant. The contiguous latex includes an abundance of related proteins belonging to the pathogenesis-related (PR)10 family known collectively as major latex proteins (MLPs) and representing at least 35% of the total cellular protein content. Two latex MLP/PR10 proteins, thebaine synthase and neopione isomerase, have recently been shown to catalyze late steps in morphine biosynthesis previously assigned as spontaneous reactions. Using a combination of sucrose density-gradient fractionation-coupled proteomics, differential scanning fluorimetry, isothermal titration calorimetry, and X-ray crystallography, we show that the major latex proteins are a family of alkaloid-binding proteins that display altered conformation in the presence of certain ligands. Addition of MLP/PR10 proteins to yeast strains engineered with morphine biosynthetic genes from the plant significantly enhanced the conversion of salutaridine to morphinan alkaloids.


Assuntos
Alcaloides , Benzilisoquinolinas , Papaver , Papaver/genética , Papaver/metabolismo , Látex/química , Alcaloides/química , Benzilisoquinolinas/metabolismo , Morfina , Saccharomyces cerevisiae/metabolismo
9.
J Plant Res ; 135(6): 823-852, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36066757

RESUMO

Plant glutathione S-transferases are an ancient protein superfamily having antioxidant activity. These proteins are primarily involved in diverse plant functions such as plant growth and development, secondary metabolism, signaling pathways and defense against biotic and abiotic stresses. The current study aimed to comprehensively identify and characterize the GST gene family in the medicinally important crop Papaver somniferum. A total of 93 GST proteins were identified belonging to eight GST classes and found to be majorly localized in the cytoplasm. All GST genes were found on eleven opium chromosomes. Gene duplication analysis showed segmental duplication as a key factor for opium GST gene family expansion under strong purifying selection. Phylogenetic analysis with gymnosperm, angiosperm and bryophyte revealed the evolution of GSTs earlier than their division into separate groups and also prior to the divergence of monocot and dicot. The secondary structure prediction showed the dominance of α-helices indicative of PsomGSTs as structurally stable and elastic proteins. Gene architecture showed the conservation of number of exons across the classes. MEME analysis revealed only a few class specific and many across class conserved motifs. Ser was found to be the active site residue of tau, phi, theta and zeta class and Cys was catalytic residue of DHAR, lambda and GHR class. Promoter analyses identified many cis-acting regulatory elements related to hormonal, cellular, stress and light response functions. Ser was the key phosphorylation site. Only three glycosylation sites were found across the 93 PsomGSTs. 3D structure prediction was also performed and was validated. Interactome analyses revealed the correlation of PsomGSTs with glutathione metabolizing proteins. Gene enrichment analysis and KEGG pathway analyzed the involvement of PsomGSTs in three major pathways i.e. glutathione metabolism, tyrosine metabolism and ascorbate metabolism. The outcome revealed high model quality of PsomGSTs. The results of the current study will be of potential significance to understand the functional and structural importance of the GST gene family in opium, a medicinally important crop.


Assuntos
Glutationa Transferase , Papaver , Glutationa Transferase/genética , Glutationa Transferase/química , Glutationa Transferase/metabolismo , Regulação da Expressão Gênica de Plantas , Papaver/genética , Papaver/metabolismo , Filogenia , Ópio , Plantas/genética , Glutationa/metabolismo
10.
Forensic Sci Int ; 339: 111416, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35985139

RESUMO

The opium poppy acts as an important natural pain reliever but is also responsible for increased rates of severe drug abuse and addiction owing to its characteristic psychoactive effect. Non-medical illicit use of the poppy plant is markedly increasing worldwide, thereby highlighting the need for a robust species identification strategy. In this study, we identified SNPs within the region of two universal DNA barcodes, matK (maturase K) and the trnL-trnF (tRNA-Leu [3'exon]-tRNA-Phe [exon] intergenic spacer, that are forensically applicable for distinguishing opium poppy species based on a genetic analysis of 164 samples of family Papaveraceae obtained from locations spanning Jeolla-do and Jeju Island, Republic of Korea. A comparative analysis of the DNA barcode sequences for two narcotic types of the Papaver species (Papaver somniferum, Papaver somniferum subs. setigerum) to eight non-narcotic species revealed three unique nucleotide substitution events. Newly identified SNPs were located at position 255 of matK and at positions 305 and 306 of trnL-trnF; the narcotic species contained C, A, and T, whereas non-narcotic species contained T, G, and C at these positions. Phylogenetic analysis demonstrated that newly identified SNPs, which we named PsMAT255 and PsLF305/306, could be used to clearly differentiate between the narcotic and non-narcotic types of Papaver species based on the patterns of nucleotide variation. These results indicate that the nucleotide differences between the narcotic and non-narcotic species may influence genetic markers. We, therefore, developed a novel SNP-based allelic genotyping assay using the RT-PCR system that can reliably differentiate the narcotic type of the Papaver species. In summary, our findings suggest that the newly identified species-specific SNPs of both matK and trnL-trnF can be used as identification markers of narcotic Papaver species. Furthermore, a newly developed TaqMan allelic discrimination assay may be used as a practically applicable diagnostic method to survey several illicit narcotic specimens carrying the type-specific SNP.


Assuntos
Papaver , Genótipo , Nucleotídeos , Papaver/genética , Filogenia , Polimorfismo de Nucleotídeo Único
11.
Nat Commun ; 13(1): 3150, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672295

RESUMO

The STORR gene fusion event is considered essential for the evolution of the promorphinan/morphinan subclass of benzylisoquinoline alkaloids (BIAs) in opium poppy as the resulting bi-modular protein performs the isomerization of (S)- to (R)-reticuline essential for their biosynthesis. Here, we show that of the 12 Papaver species analysed those containing the STORR gene fusion also contain promorphinans/morphinans with one important exception. P. californicum encodes a functionally conserved STORR but does not produce promorphinans/morphinans. We also show that the gene fusion event occurred only once, between 16.8-24.1 million years ago before the separation of P. californicum from other Clade 2 Papaver species. The most abundant BIA in P. californicum is (R)-glaucine, a member of the aporphine subclass of BIAs, raising the possibility that STORR, once evolved, contributes to the biosynthesis of more than just the promorphinan/morphinan subclass of BIAs in the Papaveraceae.


Assuntos
Alcaloides , Benzilisoquinolinas , Morfinanos , Papaver , Alcaloides/metabolismo , Benzilisoquinolinas/metabolismo , Fusão Gênica , Morfinanos/metabolismo , Papaver/genética , Papaver/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Int J Legal Med ; 136(5): 1261-1271, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35316386

RESUMO

Papaver somniferum L. (opium poppy) is the original plant of heroin, which is a major narcotic drug, and this plant has brought great harm to human health. However, the ban on opium poppy cultivation and trafficking is facing great challenges because of abnormal profits. Therefore, rapid and accurate identification is important to address the abovementioned problems. In this study, eleven simple sequence repeats (SSR) markers and two single nucleotide polymorphism (SNP) markers were mined to distinguish opium poppy from other six Papaver species. These molecular markers were further verified through a large number of plant materials of these seven Papaver species. An excellent multiplex polymerase chain reaction (PCR) system that simultaneously amplifies the three of eleven SSR markers was developed, which effectively improves the efficiency and speed of identification. The present research is of great implication for identifying and investigating the illegal cultivation and trafficking of opium poppy.


Assuntos
Papaver , Marcadores Genéticos , Heroína , Repetições de Microssatélites , Papaver/classificação , Papaver/genética , Polimorfismo de Nucleotídeo Único
13.
Curr Biol ; 32(9): 1909-1923.e5, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35316654

RESUMO

Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are tethered to the outer leaflet of the plasma membrane where they function as key regulators of a plethora of biological processes in eukaryotes. Self-incompatibility (SI) plays a pivotal role regulating fertilization in higher plants through recognition and rejection of "self" pollen. Here, we used Arabidopsis thaliana lines that were engineered to be self-incompatible by expression of Papaver rhoeas SI determinants for an SI suppressor screen. We identify HLD1/AtPGAP1, an ortholog of the human GPI-inositol deacylase PGAP1, as a critical component required for the SI response. Besides a delay in flowering time, no developmental defects were observed in HLD1/AtPGAP1 knockout plants, but SI was completely abolished. We demonstrate that HLD1/AtPGAP1 functions as a GPI-inositol deacylase and that this GPI-remodeling activity is essential for SI. Using GFP-SKU5 as a representative GPI-AP, we show that the HLD1/AtPGAP1 mutation does not affect GPI-AP production and targeting but affects their cleavage and release from membranes in vivo. Our data not only implicate GPI-APs in SI, providing new directions to investigate SI mechanisms, but also identify a key functional role for GPI-AP remodeling by inositol deacylation in planta.


Assuntos
Arabidopsis , Papaver , Arabidopsis/metabolismo , Glicosilfosfatidilinositóis/genética , Glicosilfosfatidilinositóis/metabolismo , Humanos , Inositol/metabolismo , Papaver/genética , Papaver/metabolismo , Pólen/metabolismo
14.
Per Med ; 19(2): 155-163, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35220727

RESUMO

Diabetic patients always seek alternative treatments to lower their blood glucose level efficiently, because antidiabetic drugs produce adverse effects and many patients experience reduced response after a treatment period. Opium poppy (Papaver somniferum) is frequently consumed by diabetic patients for reduction of blood glucose level. Scientific studies found controversial results in the investigation of the blood glucose-lowering effects of opium poppy. In this regard, we explored the antidiabetic effect of opium poppy more closely. The antidiabetic or antihyperglycemic effect of P. somniferum alkaloids were reviewed. Next, opioid receptors and their role in diabetes were explored. In the final part origins of interindividual variabilities in opioid receptors and metabolizing enzymes' functions including genetic and epigenetic factors were reviewed.


Assuntos
Diabetes Mellitus , Papaver , Humanos , Papaver/genética , Ópio , Glicemia , Diabetes Mellitus/tratamento farmacológico , Receptores Opioides , Hipoglicemiantes/uso terapêutico
16.
Sci Rep ; 12(1): 111, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997061

RESUMO

Opium poppy (Papaver somniferum) is one of the world's oldest medicinal plants and a versatile model system to study secondary metabolism. However, our knowledge of its genetic diversity is limited, restricting utilization of the available germplasm for research and crop improvement. We used genotyping-by-sequencing to investigate the extent of genetic diversity and population structure in a collection of poppy germplasm consisting of 91 accessions originating in 30 countries of Europe, North Africa, America, and Asia. We identified five genetically distinct subpopulations using discriminate analysis of principal components and STRUCTURE analysis. Most accessions obtained from the same country were grouped together within subpopulations, likely a consequence of the restriction on movement of poppy germplasm. Alkaloid profiles of accessions were highly diverse, with morphine being dominant. Phylogenetic analysis identified genetic groups that were largely consistent with the subpopulations detected and that could be differentiated broadly based on traits such as number of branches and seed weight. These accessions and the associated genotypic data are valuable resources for further genetic diversity analysis, which could include definition of poppy core sets to facilitate genebank management and use of the diversity for genetic improvement of this valuable crop.


Assuntos
DNA de Plantas/genética , Genes de Plantas , Variação Genética , Genoma de Planta , Técnicas de Genotipagem , Papaver/genética , Polimorfismo de Nucleotídeo Único , Sementes/genética , Análise de Sequência de DNA , Alcaloides/metabolismo , Genótipo , Papaver/crescimento & desenvolvimento , Papaver/metabolismo , Fenótipo , Filogenia , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
17.
J Forensic Sci ; 67(2): 712-719, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34724600

RESUMO

In forensic cases suspected to involve Papaver somniferum, species identification is key to the investigation. To accurately detect and identify P. somniferum as well as common adulterants of the same genus, 19 internal transcribed spacer 2 (ITS2) sequences of P. somniferum (256 bp), Papaver canescens (254 bp), Papaver nudicaule (254 bp), Papaver pavoninum (250 bp), Papaver radicatum (254 bp), and Papaver rhoeas (256 bp) were obtained. Based on the ITS2 sequence, similarity analysis via BLAST, the nearest Kimura-2-parameter (K2P) genetic distances were calculated, and a phylogenetic tree was constructed using MEGA X software for the identification of six species of Papaver. Finally, differences in the ITS2 secondary structure between species were analyzed. The best matches of the P. somniferum ITS2 sequence were of other P. somniferum from different sources. The nearest K2P genetic distances between P. somniferum and its counterparts from other sources were zero, which was the smallest pairwise genetic distance among distances from the other five Papaver species. Various sources of P. somniferum clustered into an independent branch in the phylogenetic tree. The secondary structures of P. somniferum and P. rhoeas were significantly different from those of the other four species of Papaver. In summary, P. somniferum can be effectively distinguished from five closely related plants of the same genus by using ITS2 as a DNA barcode.


Assuntos
Papaver , Código de Barras de DNA Taxonômico , DNA de Plantas/genética , DNA Espaçador Ribossômico/genética , Papaver/genética , Filogenia
18.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34830309

RESUMO

Latex, a sticky emulsion produced by specialized cells called laticifers, is a crucial part of a plant's defense system against herbivory and pathogens. It consists of a broad spectrum of active compounds, which are beneficial not only for plants, but for human health as well, enough to mention the use of morphine or codeine from poppy latex. Here, we reviewed latex's general role in plant physiology and the significance of particular compounds (alkaloids and proteins) to its defense system with the example of Chelidonium majus L. from the poppy family. We further attempt to present latex chemicals used so far in medicine and then focus on functional studies of proteins and other compounds with potential pharmacological activities using modern techniques such as CRISPR/Cas9 gene editing. Despite the centuries-old tradition of using latex-bearing plants in therapies, there are still a lot of promising molecules waiting to be explored.


Assuntos
Anti-Infecciosos/química , Antineoplásicos/química , Chelidonium/metabolismo , Fatores Imunológicos/química , Látex/química , Alcaloides Opiáceos/química , Papaver/metabolismo , Compostos Fitoquímicos/química , Proteínas de Plantas/química , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Chelidonium/genética , Descoberta de Drogas/métodos , Edição de Genes/métodos , Herbivoria/efeitos dos fármacos , Humanos , Papaver/genética , Plantas Geneticamente Modificadas
19.
Nat Commun ; 12(1): 6030, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654815

RESUMO

For millions of years, plants evolve plenty of structurally diverse secondary metabolites (SM) to support their sessile lifestyles through continuous biochemical pathway innovation. While new genes commonly drive the evolution of plant SM pathway, how a full biosynthetic pathway evolves remains poorly understood. The evolution of pathway involves recruiting new genes along the reaction cascade forwardly, backwardly, or in a patchwork manner. With three chromosome-scale Papaver genome assemblies, we here reveal whole-genome duplications (WGDs) apparently accelerate chromosomal rearrangements with a nonrandom distribution towards SM optimization. A burst of structural variants involving fusions, translocations and duplications within 7.7 million years have assembled nine genes into the benzylisoquinoline alkaloids gene cluster, following a punctuated patchwork model. Biosynthetic gene copies and their total expression matter to morphinan production. Our results demonstrate how new genes have been recruited from a WGD-induced repertoire of unregulated enzymes with promiscuous reactivities to innovate efficient metabolic pathways with spatiotemporal constraint.


Assuntos
Vias Biossintéticas , Cromossomos/metabolismo , Morfinanos/metabolismo , Noscapina/metabolismo , Papaver/genética , Papaver/metabolismo , Alcaloides/química , Alcaloides/metabolismo , Benzilisoquinolinas/metabolismo , Vias Biossintéticas/genética , Evolução Molecular , Genoma , Genômica , Família Multigênica , Proteínas de Plantas/genética
20.
Forensic Sci Int Genet ; 55: 102581, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34517229

RESUMO

Opium poppy, a member of the Papaveraceae family, is an ancient herbaceous plant and well-known medical resource in the pharmaceutical industry. However, opium poppies are grown worldwide for producing illicit drugs, significantly increasing the incidence of narcotic drug abuse. Since the narcotic poppy has not yet been genetically investigated, we characterized a novel variable number tandem repeat (VNTR) marker of forensically important poppy species based on the genetic analysis of 164 samples collected from two locations spanning the Jeolla province and Jeju island of South Korea. Comparing analysis of the chloroplast (cp) genome sequences for four representative species of Papaver (Papaver somniferum, Papaver somniferum subs. setigerum, Papaver orientale, and Papaver rhoeas) revealed a unique region with 1-3 repeats for 16 nucleotide motifs in the genome inverted repeat A (IRA, positions 128,651 to 128,698) region. For 16 nucleotide motifs, 3 repeats were found in P. somniferum, and 2 repeats were found in P. somniferum subs. setigerum. Therefore, 10 known and the 133 unknown, seized Papaver species were compared to determine whether the species could be identified via variations in the repeat units. The sizes of a novel VNTR ranged from 181 to 252 bp between the species. Phylogenetic analysis confirmed that a novel VNTR, which we named Pscp1, could clearly distinguish between the narcotic and non-narcotic types of Papaver species based on the patterns of sequence variation. Interestingly, we found that Pscp1 could also distinguish between P. somniferum and P. somniferum subs. setigerum. The regions of eight non-narcotic species displayed similar patterns and also differences were found due to the nucleotide substitution and deletion events. The structural differences of Pscp1 were observed within the two narcotic species or between the narcotic and non-narcotic species, suggesting that these variations may act as a genetic marker. We, therefore, developed a new Pscp1 PCR-capillary electrophoresis (CE) method that can reliably identify the narcotic type of Papaver species. Taken together, our findings suggest that the newly developed Pscp1 can be used as an identification marker of opium poppy, and establish that the Pscp1 genotyping method by PCR-CE is an effective primary screening tool that can also contribute to species discrimination in the field of forensic diagnosis and applications.


Assuntos
Papaver , Marcadores Genéticos , Humanos , Repetições Minissatélites , Papaver/genética , Filogenia , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...